

J2EE interview questions and answers,

1-25: J2EE Basics

1.​ What is J2EE?​

○​ J2EE (Java 2 Enterprise Edition) is a platform for developing and deploying
enterprise applications using Java technologies.

2.​ What are the core components of J2EE?​

○​ Servlets, JSP (JavaServer Pages), EJB (Enterprise JavaBeans), JNDI, JDBC,
JMS, JTA, JavaMail, and Web Services.

3.​ What is a Servlet?​

○​ A Java class that handles HTTP requests and responses in a web
application.

4.​ What is a JSP?​

○​ A technology that allows embedding Java code in HTML pages.
5.​ Difference between Servlets and JSP?​

○​ Servlets are Java classes; JSP is an HTML-based page with Java code. JSP

is easier for designing pages, while Servlets are better for processing logic.
6.​ What is an EJB?​

○​ Enterprise JavaBeans (EJB) is a server-side component architecture for

modular enterprise applications.
7.​ What are the types of EJB?​

○​ Session Beans (Stateless, Stateful, Singleton), Entity Beans,

Message-Driven Beans (MDBs).
8.​ What is a Stateless vs. Stateful Session Bean?​

○​ Stateless does not maintain a client state; Stateful maintains a session state.

9.​ What is JDBC?​

○​ Java Database Connectivity (JDBC) is an API for interacting with databases.
10.​What is a Connection Pool in JDBC?​

○​ A cache of database connections for reuse, improving performance.

11.​What is JNDI?​

○​ Java Naming and Directory Interface, used for looking up resources like
DataSources, EJBs, etc.

12.​What is JMS?​

○​ Java Message Service is used for asynchronous messaging between
components.

13.​What is JTA?​

○​ Java Transaction API, used for managing distributed transactions.
14.​What is the role of JPA in J2EE?​

○​ Java Persistence API (JPA) is used for ORM (Object-Relational Mapping).

15.​Difference between Hibernate and JPA?​

○​ Hibernate is an implementation of JPA; JPA is a specification.
16.​What is a WAR file?​

○​ A Web Application Archive (WAR) contains Servlets, JSPs, and other web

resources.
17.​What is an EAR file?​

○​ Enterprise Archive (EAR) is used for packaging an enterprise application

containing WAR and JAR files.
18.​What is an MVC pattern?​

○​ Model-View-Controller (MVC) is a design pattern that separates business

logic, UI, and control logic.
19.​What is a Filter in Servlets?​

○​ A Java class that intercepts requests before reaching a Servlet.

20.​What is a Listener in Servlets?​

○​ A component that listens for events like session creation or destruction.
21.​What is a Web.xml file?​

○​ The deployment descriptor of a Java web application.

22.​What is Annotations in J2EE?​

○​ Metadata added to Java classes for defining configurations without XML.
23.​What is the role of a DispatcherServlet in Spring?​

○​ It is the front controller that handles all requests in a Spring MVC application.

24.​What are the scopes in JSP?​

○​ Page, Request, Session, Application.
25.​What is the difference between forward() and sendRedirect()?​

○​ forward() is server-side (internal), sendRedirect() is client-side

(external).

26-50: Coding-Based Questions
How do you connect to a database in JDBC?​
​
 Connection con = DriverManager.getConnection("jdbc:mysql://localhost:3306/dbname",
"user", "password");

26.​

How do you create a Servlet?​
​
 @WebServlet("/hello")
public class HelloServlet extends HttpServlet {
 protected void doGet(HttpServletRequest request, HttpServletResponse response) throws
IOException {
 response.getWriter().println("Hello, World!");
 }
}

27.​
28.​How do you handle exceptions in Servlets?​

○​ Using try-catch, error-page in web.xml, or @ExceptionHandler in

Spring.

Write a simple JSP page.​
​
 <%@ page language="java" %>
<html>
<body>
 <h1>Hello, <%= request.getParameter("name") %></h1>
</body>
</html>

29.​
30.​What is a DAO pattern?​

○​ A Data Access Object (DAO) encapsulates database interactions.

How to implement a Singleton Bean in Spring?​
​
 @Component
public class SingletonBean { }

31.​

Write a simple Spring Boot REST controller.​
​
 @RestController

public class HelloController {
 @GetMapping("/hello")
 public String sayHello() {
 return "Hello World";
 }
}

32.​
33.​What is @Transactional in J2EE?​

○​ Used to manage transactions automatically.

How do you configure a DataSource in Spring Boot?​
​
 spring.datasource.url=jdbc:mysql://localhost:3306/db
spring.datasource.username=root
spring.datasource.password=pass

34.​
35.​Difference between GET and POST?​

○​ GET is idempotent and used for fetching; POST is used for modifying data.

51-75: Frameworks & Advanced Topics

51.​What is Hibernate?​

○​ An ORM framework for interacting with databases.

What are Hibernate Annotations?​
​
 @Entity
@Table(name = "users")
public class User { }

52.​
53.​What is Lazy vs. Eager loading?​

○​ Lazy loads when needed; Eager loads immediately.

How do you handle transactions in Hibernate?​
​
 Session session = sessionFactory.openSession();
Transaction tx = session.beginTransaction();
tx.commit();

54.​

55.​What is the difference between HashMap and ConcurrentHashMap?​

○​ ConcurrentHashMap is thread-safe; HashMap is not.

76-100: Performance & Best Practices

76.​What are Microservices?​

○​ Small, independent services communicating via APIs.
77.​What is API Gateway?​

○​ A single entry point for multiple microservices.

78.​What is Spring Boot?​

○​ A framework for creating stand-alone Spring applications.
79.​What is a Thread Pool?​

○​ A collection of worker threads for managing concurrency.

80.​What is Dependency Injection?​

○​ Injecting dependencies instead of creating objects manually.

Here are 20 coding-based scenario questions (81-100) for J2EE, focusing on debugging,
optimization, and best practices.

81. How to optimize Hibernate queries using caching?

Use Hibernate Second-Level Cache to avoid repeated database calls.

@Entity

@Cache(usage = CacheConcurrencyStrategy.READ_ONLY)

public class User {

 @Id @GeneratedValue

 private Long id;

 private String name;

}

82. How to use Criteria API to fetch data dynamically?

CriteriaBuilder cb = entityManager.getCriteriaBuilder();

CriteriaQuery<User> query = cb.createQuery(User.class);

Root<User> root = query.from(User.class);

query.select(root).where(cb.equal(root.get("name"), "John"));

List<User> users = entityManager.createQuery(query).getResultList();

83. How to handle a memory leak in a J2EE application?

●​ Close JDBC connections properly:

try (Connection con = dataSource.getConnection();

 Statement stmt = con.createStatement()) {

 ResultSet rs = stmt.executeQuery("SELECT * FROM users");

} catch (SQLException e) {

 e.printStackTrace();

}

●​ Use WeakReferences to prevent memory leaks:

WeakReference<String> weakRef = new WeakReference<>(new String("Memory Leak
Example"));

84. How to create a multi-threaded Servlet in J2EE?

Use ExecutorService to manage threads efficiently.

@WebServlet("/threadServlet")

public class MultiThreadedServlet extends HttpServlet {

 private final ExecutorService executor = Executors.newFixedThreadPool(5);

 protected void doGet(HttpServletRequest request, HttpServletResponse response) {

 executor.execute(() -> System.out.println("Processing request in thread: " +
Thread.currentThread().getName()));

 }

}

85. How to implement pagination in JPA?

int pageNumber = 0, pageSize = 10;

Pageable pageable = PageRequest.of(pageNumber, pageSize);

Page<User> userPage = userRepository.findAll(pageable);

86. How to create a REST API for file upload in Spring Boot?

@RestController

public class FileController {

 @PostMapping("/upload")

 public ResponseEntity<String> uploadFile(@RequestParam("file") MultipartFile file) {

 return ResponseEntity.ok("File uploaded: " + file.getOriginalFilename());

 }

}

87. How to implement role-based security in Spring Boot?

@Configuration

@EnableWebSecurity

public class SecurityConfig extends WebSecurityConfigurerAdapter {

 protected void configure(HttpSecurity http) throws Exception {

 http.authorizeRequests()

 .antMatchers("/admin").hasRole("ADMIN")

 .antMatchers("/user").hasAnyRole("USER", "ADMIN")

 .and().formLogin();

 }

}

88. How to implement optimistic locking in JPA?

@Entity

public class Product {

 @Id @GeneratedValue

 private Long id;

 @Version

 private int version;

}

89. How to call a stored procedure using JPA?

@Query(value = "CALL getUserById(:id)", nativeQuery = true)

User getUserById(@Param("id") Long id);

90. How to schedule a background job in Spring Boot?

@Component

public class ScheduledTask {

 @Scheduled(fixedRate = 5000)

 public void runTask() {

 System.out.println("Running scheduled task...");

 }

}

91. How to use WebSockets in Spring Boot?

@Configuration

@EnableWebSocket

public class WebSocketConfig implements WebSocketConfigurer {

 public void registerWebSocketHandlers(WebSocketHandlerRegistry registry) {

 registry.addHandler(new MyWebSocketHandler(), "/socket");

 }

}

92. How to write a custom exception handler in Spring Boot?

@ControllerAdvice

public class GlobalExceptionHandler {

 @ExceptionHandler(Exception.class)

 public ResponseEntity<String> handleException(Exception e) {

 return ResponseEntity.status(HttpStatus.INTERNAL_SERVER_ERROR).body("Error: "
+ e.getMessage());

 }

}

93. How to configure a DataSource in Spring Boot?

spring.datasource.url=jdbc:mysql://localhost:3306/mydb

spring.datasource.username=root

spring.datasource.password=pass

94. How to handle transactions manually in Spring?

@Service

public class TransactionService {

 @Autowired private PlatformTransactionManager transactionManager;

 public void executeTransaction() {

 TransactionStatus status = transactionManager.getTransaction(new
DefaultTransactionDefinition());

 try {

 // Perform DB operations

 transactionManager.commit(status);

 } catch (Exception e) {

 transactionManager.rollback(status);

 }

 }

}

95. How to log SQL queries in Hibernate?

spring.jpa.show-sql=true

spring.jpa.properties.hibernate.format_sql=true

96. How to return a JSON response from a Spring Boot REST API?

@RestController

@RequestMapping("/api")

public class UserController {

 @GetMapping("/user")

 public ResponseEntity<User> getUser() {

 return ResponseEntity.ok(new User(1, "John"));

 }

}

97. How to integrate Spring Boot with Kafka?

@Component

public class KafkaProducer {

 @Autowired private KafkaTemplate<String, String> kafkaTemplate;

 public void sendMessage(String message) {

 kafkaTemplate.send("my_topic", message);

 }

}

98. How to call an external REST API in Spring Boot?

@Autowired

private RestTemplate restTemplate;

public String callApi() {

 return restTemplate.getForObject("https://api.example.com/data", String.class);

}

99. How to use @Async in Spring Boot for asynchronous processing?

@Service

public class AsyncService {

 @Async

 public void executeAsyncTask() {

 System.out.println("Executing async task...");

 }

}

100. How to implement a health check in Spring Boot?

@RestController

public class HealthCheckController {

 @GetMapping("/health")

 public String healthCheck() {

 return "Application is running";

 }

}

	26-50: Coding-Based Questions
	51-75: Frameworks & Advanced Topics
	76-100: Performance & Best Practices
	81. How to optimize Hibernate queries using caching?
	82. How to use Criteria API to fetch data dynamically?
	83. How to handle a memory leak in a J2EE application?
	84. How to create a multi-threaded Servlet in J2EE?
	85. How to implement pagination in JPA?
	86. How to create a REST API for file upload in Spring Boot?
	87. How to implement role-based security in Spring Boot?
	88. How to implement optimistic locking in JPA?
	89. How to call a stored procedure using JPA?
	90. How to schedule a background job in Spring Boot?
	91. How to use WebSockets in Spring Boot?
	92. How to write a custom exception handler in Spring Boot?
	93. How to configure a DataSource in Spring Boot?
	94. How to handle transactions manually in Spring?
	95. How to log SQL queries in Hibernate?
	96. How to return a JSON response from a Spring Boot REST API?
	97. How to integrate Spring Boot with Kafka?
	98. How to call an external REST API in Spring Boot?
	99. How to use @Async in Spring Boot for asynchronous processing?
	100. How to implement a health check in Spring Boot?

