10.

. What is Java?

o Java is an object-oriented, platform-independent, high-level programming
language.
Why is Java platform-independent?

o Java programs run on the JVM (Java Virtual Machine), making them
platform-independent.
What are JDK, JRE, and JVM?

o JDK (Java Development Kit) — Includes compiler, JRE, and development
tools.

o JRE (Java Runtime Environment) — Provides libraries and JVM to run Java

programs.
o JVM (Java Virtual Machine) — Executes Java bytecode.
Difference between JDK 8 and JDK 11?

o JDK 8 introduced Lambdas, Streams, Optional, and Default Methods.
JDK 11 removed Java EE modules and introduced var in lambda
expressions.

Explain Java memory management.

o Java has Heap and Stack memory. Objects are stored in Heap, method
calls in Stack.
o Garbage Collection removes unreferenced objects automatically.
What are Wrapper Classes in Java?

o They convert primitive data types to objects (Integer, Double, Character,
etc.).
What is Autoboxing and Unboxing?

o Autoboxing: Converting primitive to object (int — Integer).
o Unboxing: Converting object to primitive (Integer - int).
What is the difference between equals() and ==

o == checks reference equality, while .equals() checks content equality.
What is the difference between String, StringBuffer, and StringBuilder?

o String is immutable.

o StringBuffer is mutable and thread-safe.

o StringBuilder is mutable but not thread-safe.
Explain the final, finally, and finalize keywords.

final — Prevents modification (class, method, variable).
finally — Used in try-catch for cleanup.
finalize() — Called by garbage collector before object destruction.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

What is a static variable?

A variable shared by all objects of a class.

What is a static method?

A method that belongs to the class rather than an instance.

What is method overloading?

Defining multiple methods with the same name but different parameters.
What is method overriding?

Redefining a parent class method in a child class.

What are access modifiers in Java?

private, default, protected, public.

What is an abstract class?

A class that cannot be instantiated and may have abstract methods.

What is an interface in Java?

A collection of abstract methods (Java 8+ allows default and static methods).
What is multiple inheritance in Java?

Java does not support multiple inheritance in classes but supports it via interfaces.
What is the super keyword?

Used to refer to the parent class.

What is the this keyword?

Used to refer to the current instance of a class.

OOP Concepts (21-30)

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

What are the four pillars of OOP?

Encapsulation, Inheritance, Polymorphism, Abstraction.

What is Encapsulation?

Wrapping data and methods together in a class.

What is Inheritance?

A child class acquires properties from a parent class.

What is Polymorphism?

The ability of an object to take multiple forms (method overloading & overriding).
What is an Interface vs. Abstract Class?

Abstract class can have constructors and state, an interface cannot.
What is Cohesion in Java?

The degree to which a class is focused on a single concern.

What is Coupling?

The dependency between classes.

What is the instanceof operator?

Checks if an object is an instance of a specific class.

What are marker interfaces?

Interfaces with no methods, e.g., Serializable, Cloneable.
What is the Object class?

The root class for all Java classes.

Core Java Coding Questions (1-10)

31. How to swap two numbers without using a third variable?

public class SwapNumbers {
public static void main(String[] args) {

inta=10, b = 20;

a=a+b;

b=a-b;

a=a-b;

System.out.printin("a: " +a + ", b: " + b);

32. Check if a number is prime

public class PrimeCheck {

public static boolean isPrime(int num) {
if (num <= 1) return false;
for (inti = 2; i <= Math.sqrt(num); i++) {

if (num % i == 0) return false;

}
return true;

}

public static void main(String[] args) {
System.out.printin(isPrime(17)); // true

}
}

33. Find the factorial of a number

public class Factorial {
public static int factorial(int n) {
return (n ==0) ? 1 : n * factorial(n - 1);
}
public static void main(String[] args) {
System.out.printin(factorial(5)); // 120

}
}

34. Reverse a string without using reverse()

public class ReverseString {
public static String reverse(String str) {
StringBuilder sb = new StringBuilder();

for (inti = str.length() - 1;i>=0; i--) {
sb.append(str.charAt(i));

}
return sb.toString();

}
public static void main(String[] args) {
System.out.printin(reverse("hello")); // "olleh"
Y
Y

35. Check if a number is palindrome

public class PalindromeNumber {
public static boolean isPalindrome(int num) {
int rev =0, temp = num;
while (num > 0) {
rev=rev* 10 + num % 10;
num /= 10;
}
return temp == rev;
Y
public static void main(String[] args) {
System.out.printin(isPalindrome(121)); // true

}
}

OOP & Inheritance (11-15)

36. Demonstrate method overloading

class MathOperations {
int add(int a, int b) {
return a + b;
}
double add(double a, double b) {
return a + b;

}
}

public class OverloadingExample {
public static void main(String[] args) {
MathOperations obj = new MathOperations();
System.out.printin(obj.add(5, 10));
System.out.printin(obj.add(5.5, 2.5));

}
}

37. Demonstrate method overriding

class Parent {
void show() {
System.out.printin("Parent method");

}
}

class Child extends Parent {
@Override
void show() {
System.out.printin("Child method");

}
}

public class OverridingExample {
public static void main(String[] args) {
Parent obj = new Child();
obj.show(); // "Child method"

}
}

Java Collections (16-20)

38. Reverse a list using Collections API
import java.util.™;

public class ReverselList {
public static void main(String[] args) {
List<Integer> list = Arrays.asList(1, 2, 3, 4, 5);
Collections.reverse(list);
System.out.printin(list);

}
}

39. Find the first non-repeating character in a string
import java.util.*;

public class FirstUniqueChar {
public static char firstNonRepeating(String s) {
Map<Character, Integer> map = new LinkedHashMap<>();
for (char ¢ : s.toCharArray()) {
map.put(c, map.getOrDefault(c, 0) + 1);
}
for (Map.Entry<Character, Integer> entry : map.entrySet()) {

if (entry.getValue() == 1) return entry.getKey();
}
return' "

}

public static void main(String[] args) {
System.out.printin(firstNonRepeating("swiss")); // 'w'

}

40. Find duplicates in an array using HashSet
import java.util.;

public class FindDuplicates {
public static void findDuplicates(int[] arr) {
Set<Integer> seen = new HashSet<>();
for (int num : arr) {
if (Iseen.add(num)) System.out.printin("Duplicate: " + num);

}
}

public static void main(String[] args) {
intflarr={1, 2, 3,4, 2,5, 6, 3};
findDuplicates(arr);
}
}

Multithreading & Concurrency (21-25)

41. Create a thread using Runnable

class MyThread implements Runnable {
public void run() {
System.out.printin("Thread is running...");

}
}

public class ThreadExample {
public static void main(String[] args) {
Thread t = new Thread(new MyThread());
t.start();

}
}

42. Use synchronized block to prevent race conditions
class Counter {

private int count = 0;
public void increment() {
synchronized (this) {
count++;

}

}
public int getCount() {

return count;

}
}

public class SynchronizedExample {
public static void main(String[] args) {
Counter counter = new Counter();
Thread t1 = new Thread(() -> { for (inti = 0; i < 1000; i++) counter.increment(); }
Thread t2 = new Thread(() -> { for (inti = 0; i < 1000; i++) counter.increment(); }
t1.start();
t2.start();
try {
t1.join();
t2.join();
} catch (InterruptedException e) {}
System.out.printin("Final Count: " + counter.getCount());

);
);

Advanced Java (26-30)

43. Implement Singleton Design Pattern

class Singleton {
private static Singleton instance;
private Singleton() {}
public static Singleton getinstance() {
if (instance == null) {
synchronized (Singleton.class) {
if (instance == null) instance = new Singleton();
}
}
return instance;
}
}

44, Use Java 8 Streams to filter a list
import java.util.*;
import java.util.stream.Collectors;

public class StreamExample {
public static void main(String[] args) {
List<Integer> numbers = Arrays.aslList(1, 2, 3, 4, 5,6, 7, 8, 9, 10);
List<Integer> evens = numbers.stream().filter(n -> n % 2 ==
0).collect(Collectors.toList());
System.out.printin(evens);

}
}

45. Use CompletableFuture for asynchronous programming
import java.util.concurrent.”;

public class AsyncExample {
public static void main(String[] args) {
CompletableFuture.supplyAsync(() -> "Hello")
.thenApply(str -> str + " World")
.thenAccept(System.out::printin);

Multithreading & Concurrency (51-70)

46. What is Multithreading?

e Running multiple threads concurrently.
e Example: Video streaming + chat in an app.

47. How to Create a Thread?

1. Extending Thread Class

class MyThread extends Thread {
public void run() { System.out.printin("Thread running"); }

}

2. Implementing Runnable Interface

class MyRunnable implements Runnable {

public void run() { System.out.printin("Thread running"); }

}

48. Runnable vs. Thread?
Feature Thread Class Runnable Interface

Inheritance X Not flexible [74 Can extend other classes

Implementation Thread.star new
t() Thread(runnable).start

0)

49. What are volatile variables?
e Ensures a variable’s value is always read from main memory.

Example:
volatile int count = 0;

50. What is a Deadlock?

e Two threads waiting for each other, leading to infinite blocking.

51.wait() vs. sleep()

Feature wait() sleep()
Release ("4 Yes X No
Lock
Used In Multithreading Delays execution

Advanced Java (71-100)

52.What is Reflection in Java?

e Allows runtime access to class methods and fields.

Example:
Class<?> cls = Class.forName("java.lang.String");

53. How to Prevent Cloning in Singleton?

@~Override
protected Object clone() throws CloneNotSupportedException {
throw new CloneNotSupportedException();

}

54. What is Java 8 Stream API?

e A functional programming feature for data processing.

Example:
List<Integer> list = Arrays.asList(1, 2, 3);
list.stream().filter(n -> n % 2 == 0).forEach(System.out::printin);

Here are Java Multithreading (55-70) and Advanced Java (71-100) questions with
answers %’

Multithreading & Concurrency (55-70)

55. What is Synchronization in Java?

e Ensures that only one thread can access a critical section at a time.
e Used to prevent race conditions.

Example:

class Counter {
private int count = 0;

public synchronized void increment() {
count++;

}

public int getCount() {
return count;

}

56. What are volatile variables?

e A volatile variable ensures that threads always read its latest value from main
memory.

Example:

class SharedResource {
volatile int counter = 0;

}

57. What is a Deadlock?

e Occurs when two threads wait for each other to release locks, leading to an
infinite wait.

Example:

class DeadlockExample {
static final Object LOCK1 = new Object();
static final Object LOCK2 = new Object();

public static void main(String[] args) {
Thread t1 = new Thread(() -> {
synchronized (LOCK1) {
synchronized (LOCK2) {
System.out.printin("Thread 1");
}
}
D;

Thread t2 = new Thread(() -> {
synchronized (LOCK2) {
synchronized (LOCK1) {
System.out.printin("Thread 2");
}
}
b;

t1.start();
t2.start();

58. Difference between wait() and sleep()?

Feature wait() sleep()
Lock "4 Yes X No
Release
Used In Synchronization Delays execution

59. What is a ReentrantLock?

e Alock that allows a thread to acquire the same lock multiple times.

Example:
import java.util.concurrent.locks.ReentrantLock;

class ReentrantLockExample {
private final ReentrantLock lock = new ReentrantLock();

public void process() {
lock.lock();
try {
System.out.printin("Thread working...");
} finally {
lock.unlock();

}
}
}

60. What is ExecutorService?

e Manages a pool of threads for concurrent tasks.

Example:
import java.util.concurrent.*;

public class ExecutorExample {
public static void main(String[] args) {
ExecutorService executor = Executors.newFixedThreadPool(2);
executor.submit(() -> System.out.printin("Task executed"));
executor.shutdown();
}
}

61. Difference between Callable and Runnable?

Feature Runnable Callable
Return Type void Future<
V>

Exception Handling >{ No 4 Yes

Example (Callable):
Callable<Integer> task = () -> 10;

62. What is Fork/Join Framework?

e Used for parallel execution of recursive tasks.

Example:
import java.util.concurrent.”;

class ForkJoinTaskExample extends RecursiveTask<Integer> {
int n;
ForkJoinTaskExample(int n) { this.n = n; }

protected Integer compute() {
if (n <= 1) return n;
ForkJoinTaskExample t1 = new ForkJoinTaskExample(n - 1);
t1.fork();
return n + t1.join();

63. What are Atomic Variables?

e Provides thread-safe operations without synchronization.

Example:
import java.util.concurrent.atomic.Atomiclnteger;

Atomiclnteger atomicCount = new Atomiclnteger(0);
atomicCount.incrementAndGet();

64. What is ThreadLocal?

e Each thread has its own copy of a variable.

Example:
ThreadLocal<Integer> threadLocal = ThreadLocal.withlnitial(() -> 1);

65. What is a CyclicBarrier?
e Allows multiple threads to wait until all reach a common point.

Example:
import java.util.concurrent.”;

CyclicBarrier barrier = new CyclicBarrier(3, () -> System.out.printin("Barrier Reached"));

66. What is a CountDownLatch?

e Waits until all threads complete before proceeding.

Example:
CountDownlLatch latch = new CountDownLatch(3);

67. How does Thread Pool work?

e Reuses threads instead of creating new ones for every task.

68. What is a Future in Java?

e Represents the result of an asynchronous computation.

69. What is a Semaphore?
e Controls access to a shared resource with permits.

Example:

Semaphore semaphore = new Semaphore(2);
semaphore.acquire();

semaphore.release();

70. What is CompletableFuture?

e A more advanced version of Future with chaining.

Example:

CompletableFuture.supplyAsync(() -> "Hello").thenApply(str -> str + "
World").thenAccept(System.out::printin);

Advanced Java (71-100)

71. What is Reflection in Java?

e Allows runtime access to classes, methods, and fields.

Example:
Class<?> cls = Class.forName("java.lang.String");

72. What is Serialization?

e Converts an object into a byte stream.

Example:
class Student implements Serializable {}

73. What is a Singleton Class?

e Ensures only one instance of a class.

74. How to prevent cloning in Singleton?

@Override
protected Object clone() throws CloneNotSupportedException {
throw new CloneNotSupportedException();

}

75. What is Java 8 Stream API?

List<Integer> list = Arrays.asList(1, 2, 3);
list.stream().filter(n -> n % 2 == 0).forEach(System.out::printin);

76. What is the Optional Class?

e Avoids NullPointerException.

Example:
Optional<String> str = Optional.ofNullable(null);

77. What is a Lambda Expression?

Runnable r = () -> System.out.printin("Lambda");

78. What are Default Methods in Interfaces?

interface Test {
default void show() { System.out.printin("Default Method"); }

}

79. What is a Functional Interface?
e Aninterface with only one abstract method.

Example:

@Functionallnterface
interface MyFunction { void execute(); }

80. What is the Java 9 Module System?

e Helps in modularizing Java applications.

Here’s a detailed explanation of Microservices, Spring Framework, JDBC, Design
Patterns, Java Memory Management, and JVM Internals (81-100) +’

81-85: Microservices in Java

81. What is Microservices Architecture?

e Microservices is an architecture where applications are broken into smaller,
independent services.

e [Each service is loosely coupled, independently deployable, and communicates
using REST or messaging.

Example of Microservices Components:

e API Gateway (Spring Cloud Gateway)
e Service Discovery (Eureka)
e Inter-Service Communication (REST, Kafka)

82. How do Microservices communicate?

REST APIs (HTTP requests between services)
Message Brokers (Kafka, RabbitMQ)

Service Discovery (Eureka, Consul)

gRPC (efficient binary communication)

83. What is Spring Boot in Microservices?

e Spring Boot simplifies Microservices development by providing built-in
configurations for web servers, logging, security, and monitoring.

Example of a Simple Spring Boot Application:
@SpringBootApplication
public class MicroserviceApp {
public static void main(String[] args) {
SpringApplication.run(MicroserviceApp.class, args);
Y
Y

84. What is APl Gateway in Microservices?

e A central entry point for managing authentication, routing, load balancing.
e Example: Spring Cloud Gateway, Netflix Zuul

85. What is Circuit Breaker in Microservices?

e Prevents failures in one service from cascading into others.

e Example: Resilience4j, Hystrix

86-90: Spring Framework

86. What is Spring Framework?

e A Java framework for dependency injection, transaction management, and web
development.

87. What is Dependency Injection (DI)?
e Spring injects dependencies automatically, instead of creating objects manually.

Example:

@Component
class Engine {}

@Component
class Car {
private final Engine engine;
@Autowired
public Car(Engine engine) {
this.engine = engine;
}
}

88. What is Spring Boot?

e Spring Boot simplifies Spring application development by eliminating XML
configuration and providing embedded servers (Tomcat, Jetty).

89. What is @RestController in Spring?
e Combines @Controller and @ResponseBody to handle RESTful APls.

Example:

@RestController
@RequestMapping("/users")
public class UserController {

@GetMapping("/id}")
public String getUser(@PathVariable int id) {
return "User " + id;
}
}

90. What is Spring Security?
e Handles authentication and authorization in Spring applications.

Example: Enable Security

@EnableWebSecurity
public class SecurityConfig extends WebSecurityConfigurerAdapter {
@Override
protected void configure(HttpSecurity http) throws Exception {
http.authorizeRequests().anyRequest().authenticated().and().formLogin();
}
}

91-95: JDBC (Java Database Connectivity)

91. What is JDBC?

e JDBC (Java Database Connectivity) is an API for connecting Java applications
to databases.

92. JDBC vs. Hibernate?
Feature JDBC Hibernate

SQL Writing [4 Required)¢ Uses HQL
Caching Y No "4 Yes

ORM Support X No "4 Yes

93. Steps to Connect to Database using JDBC?

1. Load JDBC Driver
2. Establish Connection

3. Execute SQL Query
4. Process Results

Example:
Connection conn = DriverManager.getConnection("jdbc:mysql://localhost:3306/test", "root",
"password");
Statement stmt = conn.createStatement();
ResultSet rs = stmt.executeQuery("SELECT * FROM users");
while (rs.next()) {
System.out.printin(rs.getString("name"));

}

94. What is a Connection Pool?

e Reuses database connections to improve performance.
e Example: HikariCP, C3P0

95. What is Hibernate?
e A Java ORM framework that maps Java objects to database tables.

Example: Hibernate Entity

@Entity

class User {
@Id
private int id;
private String name;

}

96-100: Design Patterns, Java Memory, and JVM
Internals

96. What are Design Patterns?
e Reusable solutions for common software problems.
Types of Design Patterns:

1. Creational (Factory, Singleton)
2. Structural (Adapter, Proxy)
3. Behavioral (Observer, Strategy)

97. What is the Factory Pattern?
e Encapsulates object creation logic in a method.

Example:
class ShapeFactory {
public static Shape getShape(String type) {
return type.equals("Circle") ? new Circle() : new Square();
}
}

98. What is the Observer Pattern?
o Notifies multiple objects when a state changes.

Example:
class NewsAgency {
private List<Observer> observers = new ArrayList<>();
public void addObserver(Observer o) { observers.add(o); }
public void notifyObservers() { for (Observer o : observers) o.update(); }

}

99. What is Java Memory Management?

e Java memory is divided into Heap (objects) and Stack (method calls).
e Garbage Collection automatically removes unused objects.

Java Memory Areas:

Area Purpose
Heap Stores Objects
Stack Stores Method Calls & Local Variables

Metaspac Stores Class Metadata
e

100. What is JVM Internals?

e JVM (Java Virtual Machine) converts Java bytecode into machine code.
e JIT (Just-In-Time) Compiler optimizes performance.

JVM Components:

Component Purpose
Class Loader Loads Java classes
Garbage Collector Frees memory

JIT Compiler Optimizes execution

	OOP Concepts (21-30)
	Core Java Coding Questions (1-10)
	31. How to swap two numbers without using a third variable?
	32. Check if a number is prime
	33. Find the factorial of a number
	34. Reverse a string without using reverse()
	35. Check if a number is palindrome

	OOP & Inheritance (11-15)
	36. Demonstrate method overloading
	37. Demonstrate method overriding

	Java Collections (16-20)
	38. Reverse a list using Collections API
	39. Find the first non-repeating character in a string
	40. Find duplicates in an array using HashSet

	Multithreading & Concurrency (21-25)
	41. Create a thread using Runnable
	42. Use synchronized block to prevent race conditions

	Advanced Java (26-30)
	43. Implement Singleton Design Pattern
	44. Use Java 8 Streams to filter a list
	45. Use CompletableFuture for asynchronous programming

	Multithreading & Concurrency (51-70)
	46. What is Multithreading?
	47. How to Create a Thread?
	48. Runnable vs. Thread?
	49. What are volatile variables?
	Example:

	50. What is a Deadlock?
	51. wait() vs. sleep()

	Advanced Java (71-100)
	52.What is Reflection in Java?
	Example:

	53. How to Prevent Cloning in Singleton?
	54. What is Java 8 Stream API?
	Example:

	Multithreading & Concurrency (55-70)
	55. What is Synchronization in Java?
	Example:

	56. What are volatile variables?
	Example:

	57. What is a Deadlock?
	Example:

	58. Difference between wait() and sleep()?
	59. What is a ReentrantLock?
	Example:

	60. What is ExecutorService?
	Example:

	61. Difference between Callable and Runnable?
	Example (Callable):

	62. What is Fork/Join Framework?
	Example:

	63. What are Atomic Variables?
	Example:

	64. What is ThreadLocal?
	Example:

	65. What is a CyclicBarrier?
	Example:

	66. What is a CountDownLatch?
	Example:

	67. How does Thread Pool work?
	68. What is a Future in Java?
	69. What is a Semaphore?
	Example:

	70. What is CompletableFuture?
	Example:

	Advanced Java (71-100)
	71. What is Reflection in Java?
	Example:

	72. What is Serialization?
	Example:

	73. What is a Singleton Class?
	74. How to prevent cloning in Singleton?
	75. What is Java 8 Stream API?
	76. What is the Optional Class?
	Example:

	77. What is a Lambda Expression?
	78. What are Default Methods in Interfaces?
	79. What is a Functional Interface?
	Example:

	80. What is the Java 9 Module System?

	81-85: Microservices in Java
	81. What is Microservices Architecture?
	Example of Microservices Components:

	82. How do Microservices communicate?
	83. What is Spring Boot in Microservices?
	Example of a Simple Spring Boot Application:

	84. What is API Gateway in Microservices?
	85. What is Circuit Breaker in Microservices?

	86-90: Spring Framework
	86. What is Spring Framework?
	87. What is Dependency Injection (DI)?
	Example:

	88. What is Spring Boot?
	89. What is @RestController in Spring?
	Example:

	90. What is Spring Security?
	Example: Enable Security

	91-95: JDBC (Java Database Connectivity)
	91. What is JDBC?
	92. JDBC vs. Hibernate?
	93. Steps to Connect to Database using JDBC?
	Example:

	94. What is a Connection Pool?
	95. What is Hibernate?
	Example: Hibernate Entity

	96-100: Design Patterns, Java Memory, and JVM Internals
	96. What are Design Patterns?
	Types of Design Patterns:

	97. What is the Factory Pattern?
	Example:

	98. What is the Observer Pattern?
	Example:

	99. What is Java Memory Management?
	Java Memory Areas:

	100. What is JVM Internals?
	JVM Components:

	

